Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Понятие «мягких измерений»



Термин "мягкие вычисления" введен Лофти Заде в 1994 году. Это понятие объединяет такие области как: нечеткая логика, нейронные сети, вероятностные рассуждения, сети доверия и эволюционные алгоритмы; которые дополняют друг друга и используются в различных комбинациях или самостоятельно для создания гибридных интеллектуальных систем. Поэтому создание систем работающих с неопределенностью, надо понимать как составную часть "мягких" вычислений.

Новый метод вычислительной математики, поддерживаемый аппаратными средствами (нечеткими процессорами), в ряде проблемных областей стал более эффективным, чем классические методы. Первоначально эти области входили в проблематику искусственного интеллекта. Постепенно круг этих областей существенно расширился и сформировалось направление "вычислительного интеллекта". В это направление в настоящее время входят:

· нейронные сети;

· нечеткая логика и теория множеств;

· нечеткие экспертные системы;

· системы приближенных вычислений;

· теория хаоса;

· фрактальный анализ;

· нелинейные динамические системы;

· гибридные системы (нейронечеткие или нейрологические, генетиконейронные, нечеткогенетические или логикогенетические системы);

· системы, управляемые данными (нейронные сети, эволюционное вычисление).

· эволюционное моделирование;

· роевой интеллект.

Искусственные нейронные сети (ИНС ) — математические модели, а также их программные или аппаратные реализации, построенные по принципу организации и функционирования биологических нейронных сетей — сетей нервных клеток живого организма. Это понятие возникло при изучении процессов, протекающих в мозге, и при попытке смоделировать эти процессы.

Первой такой попыткой были нейронные сети Маккалока и Питтса. Впоследствии, после разработки алгоритмов обучения, получаемые модели стали использовать в практических целях: в задачах прогнозирования, для распознавания образов, в задачах управления и др.

ИНС представляют собой систему соединённых и взаимодействующих между собой простых процессоров (искусственных нейронов). Такие процессоры обычно довольно просты, особенно в сравнении с процессорами, используемыми в персональных компьютерах. Каждый процессор подобной сети имеет дело только с сигналами, которые он периодически получает, и сигналами, которые он периодически посылает другим процессорам. Будучи соединёнными в достаточно большую сеть с управляемым взаимодействием, такие локально простые процессоры вместе способны выполнять довольно сложные задачи.

С точки зрения машинного обучения, нейронная сеть представляет собой частный случай методов распознавания образов, дискриминантного анализа, методов кластеризации и т. п. С математической точки зрения, обучение нейронных сетей — это многопараметрическая задача нелинейной оптимизации. С точки зрения кибернетики, нейронная сеть используется в задачах адаптивного управления и как алгоритмы для робототехники. С точки зрения развития вычислительной техники и программирования, нейронная сеть — способ решения проблемы эффективного параллелизма. А с точки зрения искусственного интеллекта, ИНС является основой философского течения коннективизма и основным направлением в структурном подходе по изучению возможности построения (моделирования) естественного интеллекта с помощью компьютерных алгоритмов.

Нейронные сети не программируются в привычном смысле этого слова, они обучаются. Возможность обучения — одно из главных преимуществ нейронных сетей перед традиционными алгоритмами. Технически обучение заключается в нахождении коэффициентов связей между нейронами. В процессе обучения нейронная сеть способна выявлять сложные зависимости между входными данными и выходными, а также выполнять обобщение. Это значит, что в случае успешного обучения сеть сможет вернуть верный результат на основании данных, которые отсутствовали в обучающей выборке, а также неполных и/или «зашумленных», частично искаженных данных.

Нечёткая логика и теория нечётких множеств — раздел математики, являющийся обобщением классической логики и теории множеств.

Понятие нечёткой логики было впервые введено профессором Лотфи Заде еще в 1965 году. В его статье понятие множества было расширено допущением, что функция принадлежности элемента к множеству может принимать любые значения в интервале [0...1], а не только 0 или 1. Такие множества были названы нечёткими. Также автором были предложены различные логические операции над нечёткими множествами и предложено понятие лингвистической переменной, в качестве значений которой выступают нечёткие множества.

Эволюционное моделирование использует признаки теории Дарвина для построения интеллектуальных систем (методы группового учета, генетические алгоритмы).

Эволюционное моделирование это уже достаточно сложившаяся область, в которой можно выделить:

· модели возникновения молекулярно-генетических информационных систем;

· моделирование общих закономерностей эволюции (эволюционные алгоритмы).

  Это системы, которые используют только эволюционные принципы. Они успешно использовались для задач типа функциональной оптимизации и могут легко быть описаны на математическом языке. К ним относятся эволюционные алгоритмы, такие как эволюционное программирование, генетические алгоритмы, эволюционные стратегии, генетическое программирование.

Эволюционные модели - это системы, которые являются биологически более реалистичными, чем эволюционные алгоритмы, но которые не оказались полезными в прикладном смысле. Они больше похожи на биологические системы и менее направлены на решение технических задач. Они обладают сложным и интересным поведением, и, видимо, вскоре получат практическое применение. К этим системам относят так называемую искусственную жизнь.

Теория хаоса — математический аппарат, описывающий поведение некоторых нелинейных динамических систем, подверженных при определённых условиях явлению, известному как хаос. Поведение такой системы кажется случайным, даже если модель, описывающая систему, является детерминированной.

Примерами подобных систем являются атмосфера, турбулентные потоки, биологические популяции, общество как система коммуникаций и его подсистемы: экономические, политические и другие социальные системы. Их изучение, наряду с аналитическим исследованием имеющихся рекуррентных соотношений, обычно сопровождается математическим моделированием.

Теория хаоса — область исследований, связывающая математику, физику и философию. Теория хаоса гласит, что сложные системы чрезвычайно зависимы от первоначальных условий и небольшие изменения в окружающей среде ведут к непредсказуемым последствиям.

Математические системы с хаотическим поведением являются детерминированными, то есть подчиняются некоторому строгому закону и, в каком-то смысле, являются упорядоченными. Такое использование слова «хаос» отличается от его обычного значения. Существует также такая область физики, как теория квантового хаоса, изучающая недетерминированные системы, подчиняющиеся законам квантовой механики.


Поделиться:



Последнее изменение этой страницы: 2019-03-22; Просмотров: 110; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.012 с.)
Главная | Случайная страница | Обратная связь