Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Современная наука и старение



В фильме «2001 год: Космическая одиссея» экипаж межпланетного корабля погружен в состояние анабиоза на время трудного путешествия к Юпитеру. Физиологические функции астронавтов снижены до нуля, что устраняет сложности путешествий на звездолетах, рассчитанных на несколько поколений астронавтов. По этой же причине не нужно беспокоиться о большом количестве ресурсов для экипажа и о поддержании стабильной численности популяции.

Возможно ли это в действительности?

Всякий, кому приходилось жить на севере, знает, что зимой рыбы и лягушки иногда вмерзают в лед, а когда приходит весна и лед тает, просыпаются и продолжают жить как ни в чем не бывало.

В обычных условиях следовало бы ожидать, что процесс замерзания убьет эти живые организмы. При понижении температуры крови в ней начинают расти кристаллы льда. Они растут и увеличиваются как внутри клеток — и тогда они в конечном итоге прорывают клеточную стенку, так и вне клеток — и тогда клетки могут быть сжаты и раздавлены льдом. Природа решает эту проблемы очень просто — используя в качестве антифриза глюкозу и снижая таким образом температуру замерзания крови. И хотя рыбы и лягушки оказываются вмороженными в сплошной лед, кровь в их сосудах остается жидкой и по-прежнему может обеспечивать основные телесные функции.

Для человека такая высокая концентрация глюкозы в крови оказалась бы токсичной и погубила бы организм. Поэтому ученые экспериментируют с другими вариантами химических антифризов в процессе так называемой витрификации, при которой точка замерзания снижается при помощи комбинации химических веществ и кристаллы льда не образуются. Идея звучит интригующе, но результаты пока особого оптимизма не внушают. Витрификация зачастую вызывает негативные побочные эффекты. Химические вещества, используемые в лабораториях, часто оказываются ядовитыми и приводят к летальному исходу. До сих пор никому еще не удалось проснуться после замораживания живым и рассказать о своих впечатлениях. Так что до эффективного анабиоза нам еще очень далеко. Впрочем, это не останавливает предпринимателей, рекламирующих его как способ обмануть смерть. Они утверждают, что люди, больные неизлечимыми болезнями, могут отдать свои тела на замораживание — за немалую плату, естественно, — с тем, чтобы их оживили через несколько десятков лет, когда будут найдены способы лечения их болезней. Пока нет абсолютно никаких экспериментальных доказательств, что этот способ работает, но ученые надеются, что со временем все технические вопросы удастся решить.

Так что на бумаге анабиоз представляется, пожалуй, идеальным способом решения многих проблем, связанных с длительными путешествиями. Сегодня это практически недоступно, но в будущем он, возможно, станет одним из основных методов выживания при межзвездных перелетах.

Однако имеется еще одна проблема, связанная с анабиозом. Если во время полета произойдет что-то неожиданное, к примеру столкновение с астероидом, для исправления ситуации может потребоваться вмешательство человека. Для первых неотложных действий можно будет активировать роботов, но, если авария окажется достаточно серьезной, потребуется вмешательство человека с его опытом и разумом. Это означает, что некоторых пассажиров — в первую очередь инженеров — придется оживить. И если на оживление требуется значительное время, а человеческое вмешательство требуется немедленно, задержка может оказаться фатальной. Это общий недостаток межзвездных путешествий с использованием анабиоза. Не исключено даже, что нескольким поколениям инженеров придется в постоянной готовности бодрствовать на звездолете все время пути.

Пошлите туда клонов

Еще одно предложение по колонизации Галактики состоит в том, чтобы отправить в космос человеческие эмбрионы с нашей ДНК в надежде на то, что когда-нибудь где-то далеко-далеко их оживят[1]. Или послать ДНК-код, чтобы когда-нибудь его можно было использовать для сотворения нового человека. Этот метод фигурирует, в частности, в фильме «Человек из стали». Хотя Криптон, родная планета Супермена, давно взорвалась, криптонианцы были достаточно развиты, чтобы еще до взрыва записать ДНК-коды всего населения планеты. План состоял в том, чтобы отправить эту информацию на какую-нибудь планету вроде Земли, где можно было бы использовать коды для создания клонов погибших криптонианцев. Единственная проблема — для этого, возможно, пришлось бы захватить Землю и избавиться от людей, которые на ней, к несчастью, обитают и мешают реализации проекта.

У подхода, связанного с клонированием, есть свои преимущества. Вместо строительства гигантских звездолетов и создания внутри них искусственной землеподобной среды с системой жизнеобеспечения, можно было бы ограничиться всего лишь перевозкой ДНК. Даже большие контейнеры с человеческими эмбрионами вполне поместились бы в стандартный космический корабль. Писатели-фантасты допускают, что нечто подобное произошло много эпох назад, когда некий биологический вид, обитавший во Вселенной до человека, рассеял свою ДНК в нашем секторе Галактики и тем самым сделал возможным появление и развитие человечества.

У этого предложения, однако, есть несколько недостатков. Пока ни один человек еще не был клонирован. Мало того, не был успешно клонирован ни один примат. Технология клонирования еще недостаточно развита, чтобы клонировать человека, хотя в будущем это, вероятно, будет сделано. Если это произойдет, можно будет разработать роботов, которые могли бы создавать клонов и заботиться о них.

Что еще более важно, оживление человеческих клонов может привести к созданию существ, генетически идентичных нам, которые не унаследуют от нас ни воспоминаний, ни личности и начнут существование с чистого листа. Возможность отправить таким путем в далекий космос полноценную личность человека вместе с его воспоминаниями выходит далеко за рамки наших способностей. Если такое вообще возможно, для этого требуются технологии, на разработку которых уйдут десятки, а то и сотни лет.

Но, может быть, наряду с замораживанием или клонированием существует и другой способ обеспечить себе возможность путешествовать к звездам — для этого достаточно замедлить или вовсе остановить процесс старения.

В поисках бессмертия

Поиск вечной жизни — одна из древнейших тем в мировой литературе. Она восходит еще к «Эпосу о Гильгамеше», созданному около 5000 лет назад. В нем рассказывается о подвигах шумерского воина, пустившегося в долгий путь. Он переживает множество приключений и встреч, включая встречу с человеком, который напоминает нам Ноя и был свидетелем Всемирного потопа. Цель долгого путешествия — поиск секрета бессмертия. В Библии Бог изгнал Адама и Еву из райского сада за то, что они, нарушив его запрет, вкусили от древа познания. Бог рассердился на них, потому что они могли воспользоваться обретенным знанием, чтобы стать бессмертными.

Человечество во все века было одержимо идеей бессмертия. На протяжении почти всей истории младенцы умирали при родах, а те, кому повезло выжить, часто жили впроголодь. Эпидемии распространялись, как степные пожары, потому что жители частенько выбрасывали свои кухонные отходы прямо в окно. Санитарии в том виде, как сегодня, не существовало, так что в деревнях и городах стояла сильная вонь. Больницы, если они вообще существовали, были местом, где бедняк мог умереть. Это были, по существу, сараи для нищих и обездоленных, поскольку богатые могли позволить себе личных докторов. Но богатые тоже становились жертвами болезней, а их личные доктора, как правило, мало отличались от шарлатанов. (Один врач на Среднем Западе США вел дневник, в котором записывал свои ежедневные визиты к пациентам. Он признавался, что в его саквояже было всего два действительно полезных в лекарском деле предмета — пила для ампутации травмированных или больных конечностей и склянка с морфином для обезболивания при этой операции.)

В 1900 г. ожидаемая продолжительность жизни в Соединенных Штатах составляла 49 лет. Но две революции добавили к этому числу еще несколько десятилетий.

Во-первых, улучшилась санитария, она обеспечила нам чистую воду и вывоз отходов и помогла устранить самые страшные эпидемии. Это добавило к ожидаемой продолжительности жизни около 15 лет.

Второй революцией стала революция в медицине. Мы часто считаем само собой разумеющимся, что предки наши жили в смертном страхе перед целым бестиарием древних болезней (таких, как туберкулез, оспа, корь, полиомиелит, коклюш и т.п.). В эпоху после Второй мировой войны эти болезни были в значительной степени побеждены при помощи антибиотиков и вакцин, что добавило к ожидаемой продолжительности жизни еще 10 лет. За это время репутация больниц тоже значительно изменилась: они стали местом, где человек получает реальные средства от болезней.

Может ли современная наука раскрыть секреты процессов старения, замедлив или даже вообще остановив ход биологических часов и увеличив ожидаемую продолжительность жизни почти до бесконечности?

Человечество стремится к этому испокон веку, но есть и новый фактор — в настоящее время эта идея привлекла к себе внимание многих богатейших людей планеты. Все больше предпринимателей из Кремниевой долины вкладывают миллионы в исследование процессов старения с целью победить этот процесс. Не удовлетворившись объединением всего мира в единую сеть, они ставят перед собой новую цель — жить вечно. Сооснователь Google Сергей Брин надеется найти ни много ни мало «лекарство от смерти». И компания Calico под управлением Брина со временем, возможно, вольет миллиарды долларов в партнерство с фармацевтической компанией AbbVie, чтобы разобраться с этой проблемой. Сооснователь Oracle Ларри Эллисон считает, что смириться со смертностью человека «немыслимо». Сооснователь компании PayPal Питер Тиль мечтает прожить скромные 120 лет, тогда как русский интернет-магнат Дмитрий Ицков хочет жить до 10 000 лет. С поддержкой таких людей, как Брин, и доступом к технологическим инновациям мы, возможно, сумеем наконец направить всю мощь современной науки на разгадку этой древней тайны и повышение продолжительности нашей жизни.

Не так давно ученые раскрыли один из глубочайших секретов процесса старения. После многих столетий фальстартов у нас имеется всего несколько надежных, проверяемых теорий, которые представляются перспективными. Среди них ограничение калорийности, теломераза и гены старения.

Из перечисленного только один метод уже доказал способность продлевать жизнь животных, иногда даже удваивать ее срок. Этот метод подразумевает серьезное ограничение калорийности пищи животного.

В среднем те животные, которые съедают на 30% меньше калорий, живут на 30% дольше. Это было продемонстрировано на дрожжевых клетках, червях, насекомых, мышах и крысах, собаках и кошках, а теперь уже и на приматах. Строго говоря, это единственный метод, принимаемый всеми учеными: все признают, что он меняет продолжительность жизни всех без исключения животных, на которых до сих пор проводились испытания. Единственное значимое животное, на котором этот метод до сих пор не опробован, — это человек.

Теория состоит в том, что животные в дикой природе ведут полуголодную жизнь. В тучные времена они используют свои ограниченные ресурсы на продление рода, а в тощие времена входят в состояние, близкое к анабиозу, чтобы сберечь ресурсы и пережить голодный период. Уменьшение рациона запускает второй вариант биологического ответа организма, и животное живет дольше.

Единственная проблема ограничения калорийности, однако, состоит в том, что при низкокалорийном питании животные становятся сонными, вялыми и теряют интерес к сексу. А большинство людей заартачится, если предложить им съедать на 30% калорий меньше. Поэтому фармацевтическая промышленность очень хотела бы найти химические вещества, которые управляют этим процессом, и овладеть мощью ограничения калорийности, избежав при этом ее очевидных побочных эффектов.

Не так давно было выделено перспективное химическое вещество, получившее название ресвератрол. Это вещество, обнаруженное в красном вине, помогает активировать белок сиртуин, который, как было показано, замедляет процесс окисления — принципиально важный компонент старения — и потому может отчасти защитить организм от связанного со старением повреждения молекул.

Мне довелось брать интервью у Леонарда Гаренте, исследователя из Массачусетского технологического института, который первым продемонстрировал связь между этими химическими веществами и процессом старения. Он был удивлен количеством фанатиков новых диет, набросившихся на эти соединения, как на источник вечной молодости. Гаренте относился к этому скептически, но допускал, что если когда-нибудь будет найдено реальное средство от старения, то эти вещества, возможно, сыграют здесь определенную роль. Он даже стал одним из основателей компании Elysium Health, занявшейся такими исследованиями.

Еще одним ключом к проблеме старения может стать теломераза, помогающая регулировать ход наших биологических часов. При каждом делении клетки концы хромосом, называемые теломерами, становятся чуть короче. Со временем, после приблизительно 50–60 делений, теломеры становятся такими короткими, что вообще пропадают, и хромосома начинает разваливаться. В результате клетка дряхлеет и теряет способность нормально функционировать. Существует предел для числа делений клетки, называемый пределом Хейфлика. (Я однажды брал интервью у доктора Леонарда Хейфлика, и он рассмеялся, когда я спросил его, можно ли каким-то образом обойти предел Хейфлика и обезопасить себя от смерти. Он был настроен в высшей степени скептически и считал этот биологический предел основным в сложном и многообразном биохимическом процессе старения. Мы пока мало знаем о нем и далеки от возможности изменить этот предел в клетках человеческого организма.)

Нобелевский лауреат Элизабет Блэкберн настроена более оптимистично: «Все признаки, включая генетику, говорят, что существует причинная связь между теломерами и теми неприятными вещами, которые происходят по мере старения». Она отмечает, что есть непосредственная связь между укороченными теломерами и некоторыми болезнями. К примеру, если теломеры у вас укороченные (как у нижней трети популяции), риск развития сердечно-сосудистых заболеваний для вас выше на 40%. «Именно укорачивание теломеров, судя по всему, лежит в основе риска тех заболеваний, которые нас убивают… это сердечные болезни, диабет, рак, даже болезнь Альцгеймера», — заключает Блэкберн[2].

В последнее время ученые экспериментируют с теломеразой — ферментом, открытым Блэкберн и ее коллегами и предотвращающим укорачивание теломеров. Этот фермент способен, в определенном смысле, «остановить часы». Клетки кожи, омываемые теломеразой, могут делиться до бесконечности, выходя далеко за предел Хейфлика. Мне довелось однажды брать интервью у доктора Майкла Уэста, работавшего в Geron Corporation. Уэст экспериментирует с теломеразой и утверждает, что может «обессмертить» клетку кожи в лаборатории, так что она будет жить вечно. Клетки кожи в его лаборатории могут делиться не 50–60, а сотни раз.

Следует, однако, указать, что с теломеразой следует обращаться очень аккуратно, поскольку раковые клетки тоже бессмертны и тоже используют теломеразу, чтобы добиться бессмертия. Одно из отличий раковых клеток от нормальных заключается в том, что они живут вечно и размножаются безо всякого предела, порождая опухоли, которые нас убивают. Так что нежелательным побочным продуктом использования теломеразы может стать рак.

Генетика старения

Еще одна возможность победить старение связана с генной инженерией.

Тот факт, что гены сильно влияют на старение, очевиден. Бабочки после выхода из кокона живут всего несколько дней или недель. Мыши, которых изучают в лабораториях, обычно живут всего около двух лет. Собаки стареют примерно в семь раз быстрее людей и живут немногим более десяти лет.

Изучая животное царство, мы находим существа, которые живут так долго, что продолжительность их жизни трудно измерить. В 2016 г. автор статьи в журнале Science сообщил, что гренландская полярная акула живет в среднем 272 года и превосходит по продолжительности жизни гренландского кита (в среднем 200 лет). Это делает гренландскую акулу самым долгоживущим позвоночным животным. Их возраст ученые подсчитывали путем анализа слоев ткани в глазу акулы, который растет послойно, как луковица. Мало того, они обнаружили одну акулу, возраст которой составлял 392 года, и еще одну, которой, возможно, было целых 512 лет.

Таким образом, разные биологические виды с разным генетическим аппаратом сильно различаются между собой по продолжительности жизни. Исследования показывают, что даже среди людей, хотя гены у всех нас почти идентичны, близнецы и вообще близкие родственники имеют близкую ожидаемую продолжительность жизни и что люди, отобранные случайным образом, различаются по этому признаку намного сильнее.

Но, если старение хотя бы отчасти управляется генами, очень важно выделить те гены, которые им управляют. Здесь возможно несколько подходов.

Один из перспективных подходов состоит в том, чтобы анализировать гены молодых людей, а затем сравнивать их с генами стариков. Сравнив два набора генов при помощи компьютера, можно быстро выделить места, где наблюдается больше всего генетических повреждений, вызванных старением.

К примеру, старение автомобиля происходит в первую очередь в двигателе, где сильнее всего сказываются коррозия и механический износ. В живой клетке роль «двигателя» играют митохондрии. Именно в них сахара окисляются с выделением энергии. Подробный анализ ДНК внутри митохондрий указывает на то, что ошибки, и правда, концентрируются именно здесь. Есть надежда, что когда-нибудь ученые смогут использовать собственные ремонтные механизмы клетки, чтобы обратить вспять процесс накопления ошибок в митохондриях и тем самым продлить срок полезной жизни клетки.

Томас Перлс из Бостонского университета, исходя из предположения, что некоторые люди генетически предрасположены к более долгой жизни, проанализировал гены долгожителей и описал 281 маркер для генов, которые, судя по всему, замедляют процесс старения и каким-то образом делают долгожителей менее уязвимыми для болезней.

Мало-помалу механизм старения становится нам понятен, и многие ученые с осторожным оптимизмом говорят о том, что в ближайшие десятилетия он, возможно, станет управляемым. Исследования показывают, что старение, судя по всему, есть просто накопление ошибок в ДНК и клетках, и когда-нибудь мы, возможно, научимся останавливать или даже обращать вспять этот процесс[3]. Мало того, некоторые гарвардские исследователи настроены настолько оптимистично, что уже создали коммерческие компании в надежде заработать на результатах исследований процессов старения.

Сам факт, что гены играют важную роль в определении продолжительности нашей жизни, сомнению не подлежит. Проблема заключается в том, чтобы определить, какие именно гены задействованы в процессе, отделив при этом их действие от действия среды, и изменить нужные гены.


Поделиться:



Последнее изменение этой страницы: 2019-06-19; Просмотров: 206; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.029 с.)
Главная | Случайная страница | Обратная связь